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ABSTRACT

The orientation distribution function of a dumbbell undergoing rotary
Brownian motion (with time constant 1)) in steady shear flow, and the
viscosity and normal stress coefficients are computed by a perturbation
expansion in small, dimensionless shear rates X?. It is found that the
series expansions for both the viscosity and the first normal stress
coefficient have identical radii of convergence at X; = 0.81. By using
analytical continuation, the solution was extended to A? = 1.5, and checked
with established results. Our results agree with earlier perturbation
calculations of Kirkwood and Plock (1956), Bird and Warner (1971) and

numerical calculations of Stewart and Sorenson (1972).

AMS (MOS) Subject Classifications: 76A05, 35L65
Key Words: rigid dumbbells, rotary Brownian diffusion, suspension

Work Unit Number 2 (Physical Mathematics)
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SIGNIFICANCE AND EXPLANATION

Polymeric solutions play a central role in the manufacture of many
plastics and especially, artificial fibres. A large research effort over
decades has therefore been directed towards the prediction of the mechanical
properties of such solutions which are important in manufacture, in
particular, their viscosity and their normal stress.

It has turned out that many features found in a plot of the viscosity and
normal stress coefficients vs. shear rate for polymeric solutions can be
modeled gualitatively by a suspension of rigid dumbbells. Thus this model has
been quite popular. Despite many attempts, exact analytical solutions have
never been found for this problem although numerical and asymptotic results
are available.

The following investigation establishes that the asymptotic solution for
weak flows (or strong Brownian diffusion) is accurate only for dimensionless
shear rates X; less than 0.81 where ; is the shear rate and XA is a

material time constant for the rigid dumbbell model.
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Q A PERTURBATION SOLUTION FOR RIGID DUMBBELL SUSPENSIONS IN STEADY SHEAR FLOW
: Sangtae Kim*'] and Xijun Fan**’2 ' e
’/'.,-(— SV L A A
8 INTRODUCTION
l_ "’/’w~t“The rigid dumbbell in a Newtonian solvent under hydrodynamic and

a~cwnian forces is a simple model of solutions of rigid macromolecules with

: both theoretical and pedagogical applications.l»2 1In this note, we show that
ﬁ; expansion solutions in small, dimension1e;s shear rates,(;%, have a finite
;i' radius of convergence. We 2150 show that these solutions can be analytically
;i continued to 2 much larger domain by standard techniques for accelerating the
‘: convergence of series. -

i; STATEMENT OF THE PROBLEM
ii Consider a dilute suspension (number of particles per unit volume,

.E n << 1) of rigid axisymmetric particles, where hydrodynamic interaction is

‘ﬁ negligible between particles. The material functions can be determined from
(" - the orientation distribution function, w(e,é); where v(6,¢) deéds gives the

E{ fraction of particles with the axis oriented between (e, e + d8) and

5 (6, ¢ + d¢). © and ¢ are the usual spherical azimuthal and longitudinal

‘ angles. The equation of continuity and the equations of motion combine to

j give the "diffusion equation" for v, which for steady shear flow becomes?

; Me¥) - 6xval¥g) = 0 . (1)

q

£ with the operators R, and 0 defined as

: *Department of Chemical Engineering, University of Wisconsin-Madison, Madison,
WI  53706.

: HDepartment of Mechanics, Zhejiang University, Hangzhou, Zhejiang, CHINA.

; 1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and
[ the Du Pont Corporation.

3 2Suppmr‘ted by the National Science Foundation under Grant No. CPE-8104705.
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. 1 8 .. 8v . 1 3%y .
A = —(s1ne—)+—_z..__,z )
sing a8 a8 sin~ 8 3¢

-~

sing cos¢é o

W= = 3% (sinze cos® y) - %3 (sin2¢ v) A
L
v, l
We have defined our coordinate system such that —— = y is the only non- i

3y |
vanishing element of the velocity gradient tensor Vv. For rigid dumbbells of '

length L, and bead friction coefficient g, the rotational time constant is

given by X = cLZ/(IZkT). The expression for ) for other axisymmetric shapes

is given by Brenner.3

A general analytic solution of (1) has never been found 2lthough exact

solutions of related equations such as Boeder's equation are known.4

Our objective is to solve equation (1) for ¢ using a perturbation series NS
-

in Ay and to use the results to calculate the viscosity n and the first . i

.
e
L 'y

»,
e
a2 8

normal-stress coefficient ¥ (?2 vanishes for this rigid dumbbell model):

o}

K
! 0 0 2 RN
n-ng E-nkTA<2(P0 - PZ) - PZ sff 2¢>¢ (2) =
Y = NKTA p2 gin 24> (3)
" v
5
THE PERTURBATION SOLUTION
We expand ¢ in powers of Ay
ve,e) = . i (631)% ¢, (8,6) (4)
BERLEN K

and substitute into the diffusion equation (1) to get the following hierarchy

of equations for the L% -y
2 ‘“i
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2= T [ALLL,20) - 2ar1,2,2k) - & Ac2,2,20) (62912
nkT2 k=0 5 5

D E NI
k=0

N Sw - :-':‘
) —L = F 12m2,2,2041) (6A9) o
' onkTa? k=0 =

(9)

£ S (1) NE
k=0

The first twenty coefficients, ax and by, are given in Table 1. The values :,:1
for ag, 2, and a, agree with Kirkwood and Plock® and Bird and wWarner.® ‘—;"'
o
DISCUSSION =3
We note that the ratios ay+j/ax and by.)/bx approach an asymptotic value :<
with large k, i.e. approximately 1.521006. This result was tested by \.i
generating ax.and by up to k = 85, and it was found to hold for these'higher q
coefficients as well. Therefore, the coefficients approach asymptotically to T-'.;?j,
the coefficients of a geometric series in (xy)2 with a radius of convergence g:
of (1.521006)-1/2 = ¢.81. Therefore, our series solution converges only for “5
Ay < 0.81. However, since the coefficients approach those of a geometric :"-},
series, we tried analytical continuation. '!",
First, we replace the higher coefficients ay and by for k > N+l with :
their asymptotic counterparts ay and by: .J
-3-
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I~ Tab\e 1 .:::::
' Coefficients for the Series Solutions _‘1:_
; k ax by
! 0 1 1
R 1 0.5142 8571 1.0857 143
3 2 0.6888 3117 1.5475 724
2 3 1.0173 986 2.3156 606
. 4 1.5354 447 3.5063 866
- 5 2.3303 602 5.3265 547
- 6 0.3542 3678x10} 0.8098 9823x101
_ 7 0.5387 1583x10) 0.1231 7694x102
8 0.8193 7480x101 0.1873 5352x102
N 9 0.1246 2985x102 0.2849 7327x102
“ 10 0.1895 6859x102 0.4334 6025x102
. 11 0.2883 4481x102 0.6593 1852x102
v 12 0.4385 8958x102 0.1002 8628x103
s 13 0.6671 2099x102 0.1525 4144x103
14 0.1014 7310x103 0.2320 2467x103
: 15 0.1543 4667x103 0.3529 2344x103
: 16 0.2347 7055x103 0.5368 1773x103
) 17 0.3571 0009x103 0.8165 3198x103
3 18 0.5431 7067x103 0.1241 9941x104
& 19 0.8261 9517x103 0.1889 1476x104
3 20 0.1256 6924x104 0.2873 5068x104



As pointed out by Kirkwood and P1ock5 and by Bird and Harner6

the ¢, may be
expressed as a linear combination of the spherical harmonics, due to

the fact that

apm{Ein ne) = -n(n+l) pM{Stn e (6)
m+2 n+2
APR{Soe pe) = 2 3 alipl{eos me (7)

COS M"  Jame2 kene2

The a:i are tabulated in Table 1 of reference (6) and'Tab1é 11.4-1 of

reference (2). Furthermore, from (7) it follows that cos m¢ terms appear

only in the & with k even, while sin m¢ terms appear only with k odd.

Therefore, the material functions given by equations (2) and (3) reduce

to a power series in (Ay)2 because of the orthogonality with respect to the

¢ integration. The perturbation results up to ¢, are given in reference (2).
We have programmed this procedure (i.e. equations 4, 6 and 7), by

generating a recursion formula for A(m,n,k), where the m,n,k element is the

2(m-1) _
coefficient of Pz(n 1) for by - The coefficients generated by the program

for ¢1, ¢, and 3 metched those given in reference (2). Because of
orthogonality, only a few terms make a contribution to the material

functions, i.e.:
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Y In the key step, the series is replaced by the equivalent continuation

Y functions so that

N .
« T (0% -5, )00 + ¢ [p? + (xn)?)7! (12)
k=0

N n-ng

T) nkTA

23 5y N _ :
— L o3 DB b 00 4, [p ¢ (in)?) (13)

6nkTAC k=0
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By comparing with the exact numerical (collocation) solutions of Stewart and

Y 4
7 )

NS
L2 B
ol A AN St

Seérensen’ we found that N = 10 was the optimum value. However, N =8, 9, 11,

and 12 also gave results which were accurate to four significant figures for

‘A
b Y

rql X

AY < 1. Table 2 shows the comparison between their collocation solution and
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{ Table 2

. Comparison of Stress Functions

g {n-ng)/nkTa ¥, /nkTAZ

o : Ay equation (12) exact equation (13) exact
re N= 10 solutiond N =10 solutiond

LA ’ "
' L’L."."l.’q

,.
S
l'{l ‘ . ,

1 1 6/5 6/5
.1 0.9949 0.9949 1.1872 1.1872
.125 0.9921 0.9921 1.1801 1.1801
.25 0.9703 - 0.9703 1.1252 1.1252
.3333 0.9502 0.9502- 1.0748 1.0749
.5 0.9029 0.9029 0.9588 0.9588
.75 0.8306 0.8306 0.7874 0.7874
.0 0.7676 0.7676 0.6467 0.6467
.5 0.6604 0.6735 0.4596 0.4565
.0833 -9.2 0.5998 -5.5 0.3289

—
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0
0
0
0
0
0
0
1
1
2
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8Collocation calculations of Stewart and S¢rensen.7
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our «xtended solution (with N = 10, ¢, = 0.18799972, ¢, = 0.35822745,
and p = 0.81082443).
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